Employing Kuratowski measure of non-compactness for positive solutions of system of singular fractional q-differential equations with numerical effects
نویسندگان
چکیده
منابع مشابه
Existence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations
In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.
متن کاملExact and numerical solutions of linear and non-linear systems of fractional partial differential equations
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
متن کاملExistence of triple positive solutions for boundary value problem of nonlinear fractional differential equations
This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...
متن کاملExistence and Nonexistence of Positive Solutions for a System of Nonlinear Singular Fractional Differential Equations
In this paper, we establish sufficient conditions for the existence and nonexistence of positive solutions to the following nonlinear fractional differential system ⎪⎪⎨ ⎪⎪⎩ Dαu(t)+a(t) f (t,u,v) = 0 in (0,1) , Dβ v(t)+b(t)g(t,u,v) = 0 in (0,1) , u(0) = 0, u(1) = 0, u′(0) = 0, v(0) = 0, v(1) = 0, v′(0) = 0, (P) where 2 < α ,β 3 , a,b ∈ C ((0,1) , [0,+∞)) and the functions f ,g belong to C ([0,1]...
متن کاملexistence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations
in this paper, we consider a coupled system of nonlinear fractional differential equations (fdes), such that bothequations have a particular perturbed terms. using emph{leray-schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2020
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil2009971s